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The Statistical Evaluation of the ESPAM2 Model 

Purpose:  

Recommend methods to statistically evaluate the 
fit of the ESPAM2.  

 Identify appropriate statistical measures of 
model fit that will allow the two year evaluation 
period (2009-2010) to be compared to the 29 
year calibration period (1980-2008). 

 In order to evaluate the fit of the model to data 
that were not used in model calibration. 

 



Root Mean Squared Error (RMSE) 

A common statistical measure of model fit is the root 
mean squared error (RMSE) (Hill and Tiedeman).  

The RMSE is calculated from the objective function for 
the calibration, the sum of the squared errors (SSE). 

RMSE = Root mean squared error = sqrt(SSE/df) 

 where 

 df = n – p 

 n = number of data points and other points fixed points used 
in the calibration 

 p = number of parameters fitted in the regression 

 



Root Mean Squared Error 

The advantage of the RMSE over the 
SSE is that by taking the square root, 
the value has the same units as the 
data. 

Smaller RMSEs result from smaller 
SSEs and indicate a better model fit.  

Larger RMSEs indicate a worse model 
fit. 
 



Root Mean Squared Error 

 Could compare the RMSE for the evaluation 
period against the RMSE from the calibration 
period  

 An issue is that the comparison of two points is 
difficult 

 One of them will be higher than the other even 
if the actual underlying fit is equivalent. 

 Validation RMSE > Calibration RMSE 50% of 
the time if fit is equivalent.  



Root Mean Squared Error 

 In addition, the RMSE of the model fit may 
vary through time 

 For example, if the model fit is related to 
periods of wet and dry weather or any other 
variable that changes through time. 

 So, need to have measures of model fit 
through the calibration period that capture 
the variability of the fit through time 

 



Root Mean Squared Error 

 Could use multiple two year periods throughout the 
calibration time period 

 1980 and 1981 

 1981 and 1982 

 1982 and 1983 

 and so on.  

 These values are not independent since most years 
will be used in the calculation of two RMSEs.  

 This approach would result in 28 RMSE values for 
the calibration period. 

 



Root Mean Squared Error 

 Could calculate the RMSE for non-overlapping, two 
year periods throughout the calibration period.  

 1980 and 1981 

 1982 and 1983 

 1984 and 1985 

 and so on.  

 These values will be independent of each other.  

 This will result in 14 RMSE values for the calibration 
period. 

 This is the first recommended approach 

 



Root Mean Squared Error 

 Then the RMSE for the evaluation period (2009 
– 2010) should be compared to the distribution 
of RMSE values from the calibration period.  

 An evaluation RMSE that falls within the range 
of calibration RMSE values would be 
considered acceptable and not invalidating the 
model. 

 An evaluation RMSE falling outside of the 
range of calibration RMSEs on the high side 
might be considered troubling. 
 



Root Mean Squared Error 

 A positive characteristic of the RMSE is that it is 
consistent with the objective function, they are 
both based on the sum of squared errors.  

 Downside is that outliers or extreme deviations 
between the model and the measurement have a 
large influence as they are squared before being 
summed. 

 This means that a small number of large deviations 
can exert a strong influence on the outcome of the 
calculation. 

 



Median Absolute Deviation 

 Second approach is the Median Absolute 
Deviation 

 The median absolute deviation (MAD) is a 
robust measure of statistical dispersion (Helsel 
and Hirsch). 

 Robust means that it is still a good measure 
even if assumptions are not met  

  It is unaffected by a small number of outliers 
or extreme deviations between the model and 
the measurement. 
 



Median Absolute Deviation 

 The median of a set of data values is the 50th 
percentile of the data, the value which exceeds 
50% of the values and is exceeded by 50% of 
the values.  

 Sort the list of values from smallest to largest.  

 With an odd number of values, there will be a 
unique median.  

 With an even number of values, it is the average 
of the two middle values. 

 



Median Absolute Deviation 

 The median absolute deviation is the median of the 
absolute values of the deviations from the data’s 
median. 

 MAD = median (|Xi – median(Xj)|) 

 Where  

Xi = the ith data point in the set 

median(Xj) = the median of all of the data values 
in the set 

 || = the absolute value of the deviations 

 



Median Absolute Deviation 

Because it is the middle value of a sorted 
list of data, it is unaffected by a few large 
values at the high end of the data set.  

 So, if some unusually large deviations 
between the model and the measurement 
exist, the median of the absolute values of 
the deviations will not be affected. 
 



Other Measures to Consider 

 Other approaches could include: 

 The Coefficient of Determination (R2) 
 Represents the percent of the variability in the data 

explained by the model 

 Ranges from 0 to 100% 

 Also based on the SSE so similar information as the 
RMSE 

 The Interquartile Range 
 The difference between the 75th percentile and the 25th 

percentile 

 Similar characteristics as the Median Absolute Deviation 

 

 



Recommendations 

 Recommended approach: 

 Use both the RMSE and MAD as the measures of model fit 

 Calculate them for successive, non-overlapping two year 
periods throughout the calibration period.  

 Compare the value for the evaluation period to the set of values 
from the calibration period.  

 An evaluation value that falls within the range of calibration 
values would be considered acceptable and not invalidate the 
model.  

 An evaluation value falling outside of the range of calibration 
values on the high side would be considered troubling and 
might require additional thought.  
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